GLC75 Commercial/GLM75 Medical 75 Watt Multiple Output Global Performance Switchers

SPECIFICATIONS:

Ac Input

$90-264 \mathrm{Vac}, 47-63 \mathrm{~Hz}$ single phase.

Input Current

Maximum input current at $120 \mathrm{Vac}, 60 \mathrm{~Hz}$ with full rated output load not to exceed 2.3 A.

Output Power

Normal continuous output power is 75 W for unrestricted natural convection cooling. The standard power is 110 W with 26 cfm airflow. During peak load conditions output regulation may exceed total regulation and noise limits.

Output Regulation

Measured by $\pm 40 \%$ load change from 60% rated load with all other outputs at 60% rated load and input voltage change from minimum to maximum ratings. Output \#1 requires 20% minimum load for proper regulation of other outputs. Initial set tolerance is measured with all outputs at 60% of full rated load. Output \#2 requires 0.5 a minimum load for proper regulation.

Overload Protection

Factory set to begin power limiting at approximately 120 W . Fully protected against short circuit and output overload. Short circuit protection is cycling type power limit.

Output Noise

$0.5 \% \mathrm{rms}, 1 \% \mathrm{pk}-\mathrm{pk}, 20 \mathrm{MHz}$ bandwidth, differential mode. Measured with noise probe directly across output terminals of the power supply.

Transient Response

Main Output: $500 \mu \mathrm{Sec}$ typical response time for return to within 0.5% of final value for a 50% load step change, $\Delta \mathrm{i}$ / $\Delta t<0.2 \mathrm{~A} / \mu \mathrm{Sec}$. Maximum voltage deviation is 3.5%.

Overvoltage Protection

Built in on V1 with firing point set per table. OVP firing reduces output \#1 and \#2 to less than 50% of nominal voltage in 50 ms .

Voltage Adjust

Factory set on standard unit; however, optional potentiometer adjusts voltage from 4.7 V to OVP point (6.2 V nominal) on the +5 V output. Note: Output \#1 must not be more than 1% below nominal to achieve full output voltage range on Output \#2. Output regulation limits in some models may be exceeded when the main output is adjusted beyond $\pm 1 \%$ of nominal voltage. High voltage settings may degrade the reliability of the unit due to excessive power dissipation in some outputs.
Efficiency
$68 \%-78 \%$ depending on model and load distribution.

FEATURES:

- Cost-effective multiple output power source
- Universal input 90-264 Vac
- 7.00 "x 4.25 "x 1.30 " (Meets 1 U height)
- 2-year warranty
- Conducted EMI exceeds FCC Class B and CISPR 22 Class B (Commercial models) and CISPR 11 Class B (Medical models)
- Complies with EN61000-3-2 Class A
- Also available in single output versions
- Commercial UL1950, CSA22.2 No. 234 and IEC950 and EN60950 approvals
- Medical Approved to UL2601-1, IEC601-1 and CSA-C22.2 No. 601.1
- C \in marked to LVD

Input Protection

Internal ac fuse provided on all units. Designed to blow only if a catastrophic failure occurs in the unit.

Inrush Current

Inrush limited by internal thermistors. Inrush at 240 Vac, averaged over the first ac half-cycle under cold start conditions will not exceed 37 A .

Hold UpTime

20 ms minimum from loss of ac input power at full load, nominal line (120 Vac).

Temperature Coefficient

$0.03 \% /{ }^{\circ} \mathrm{C}$ typical on all outputs.

Power Fail

A standard TTL or CMOS compatible output goes low ($<0.5 \mathrm{~V}$) 5 ms before output voltage drops more than 4% below nominal voltage upon loss of ac power. Signal is factory set to trip on 84 to 94 Vac brown-out depending upon incoming line impedance and distortion. Other settings are available through adjustment of built-in potentiometer (consult factory for assistance). Output will stay low for 20 ms minimum.

EMI/EMC Compliance

All models include built-in EMI filtering to meet the following emissions requirements:

EMI SPECIFICATIONS

Conducted Emissions-GLC75
Conducted Emissions-GLM75
Static Discharge
RF Field Susceptibility
Fast Transients/Bursts
Surge Susceptibility
Line Frequency Harmonics

COMPLIANCE LEVEL

EN55022 Class B; FCC Class B
EN55011 Class B; FCC Class B
EN61000-4-2, 6 kV contact, 8 kV air EN61000-4-3, $3 \mathrm{~V} /$ meter EN61000-4-4, $2 \mathrm{kV}, 5 \mathrm{kHz}$ EN61000-4-5, 1 kV diff., 2 kV com. EN61000-3-2 Class A

Commercial Safety
All GLC models are approved to UL1950, CSA22.2 No. 234 Level 3, IEC950 and EN60950. Consult factory for approval status.

Medical Leakage Current
$70 \mu \mathrm{~A} 264 \mathrm{~V}$ @ 50 Hz (normal conditions).
Medical Safety
All GLM models are approved to UL2601-1, CSA-C22.2
No. 601.1, IEC601-1 and EN60601. Consult factory for approval status.

GLC75 Commercial/GLM75 Medical 75 Watt Multiple Output

Commercial Model	Medical Model	Output No.	Output	Output Minimum	Output Maximum (A)	Output Maximum (B)	Output Peak	V1 OVP Set	Noise P-P	Regulation
GLC75A	GLM75A	1	+5.1 V	1 A	8 A	10 A	12 A	$6.2 \pm 0.6 \mathrm{~V}$	50 mV	2\%
		2	+12 V	0.5 A	2.5 A	3 A	4 A		120 mV	+10\%, -5\% (D)
		3	-12 V	0 A	1 A	1 A	1.2 A		120 mV	3\%
		4	+12 V	0 A	2.5 A	3 A	4 A		120 mV	2\%
GLC75B	GLM75B	1	+5.1 V	1 A	8 A	10 A	12 A	$6.2 \pm 0.6 \mathrm{~V}$	50 mV	2\%
		2	+12 V	0.5 A	2.5 A	3 A	4 A		120 mV	+10\%, -5\% (D)
		3	-5 V	0 A	1 A	1 A	1.2 A		50 mV	3\%
		4	+12 V	0 A	2.5 A	3 A	4 A		120 mV	2\%
GLC75C	GLM75C	1	+5.1 V	1 A	8 A	10 A	12 A	$6.2 \pm 0.6 \mathrm{~V}$	50 mV	2\%
		2	+12 V	0.5 A	2.5 A	3 A	4 A		120 mV	+10\%, -5\% (D)
		3	-15 V	0 A	1 A	1 A	1.2 A		150 mV	3\%
		4	+15 V	0 A	2.5 A	3 A	4 A		150 mV	2\%
GLC75D	GLM75D	1	+5.1 V	1 A	8 A	10 A	12 A	$6.2 \pm 0.6 \mathrm{~V}$	50 mV	2\%
		2	+24 V	0.5 A	2.5 A	2.5 A	3.5 A		240 mV	+10\%, -5\% (D)
		3	-12 V	0 A	1 A	1 A	1.2 A		120 mV	3\%
		4	+12 V	0 A	2.5 A	3 A	4 A		120 mV	2\%
GLC75E	GLM75E	1	+5.1 V	1 A	8 A	10 A	12 A	$6.2 \pm 0.6 \mathrm{~V}$	50 mV	2\%
		2	+24 V	0.5 A	2.5 A	2.5 A	3.5 A		240 mV	+10\%, -5\% (D)
		3	-15 V	0 A	1 A	1 A	1.2 A		150 mV	3\%
		4	+15 V	0 A	2.5 A	3 A	4 A		150 mV	2\%
GLC75F	GLM75F	1	+5.1 V	1 A	8 A	10 A	12 A	$6.2 \pm 0.6 \mathrm{~V}$	50 mV	2\%
		2	+15 V	0.5 A	2.5 A	3 A	4 A		150 mV	+10\%, -5\% (D)
		3	-5 V	0	1 A	1 A	1.2 A		50 mV	3\%
		4	-15 V	0	2.5 A	3 A	4 A		150 mV	2\%
GLC75H	GLM75H	1	+5.1 V	1 A	8 A	10 A	12 A	$6.2 \pm 0.6 \mathrm{~V}$	50 mV	2\%
		2	+15 V	0.5 A	2.5 A	3 A	4 A		150 mV	+10\%, -5\% (D)
		3	-15 V	0	1 A	1 A	1.2 A		150 mV	3\%
		4	+15 V	0	2.5 A	3 A	4 A		150 mV	2\%
GLC75J	GLM75J	1	+5.1 V	1 A	8 A	10A	12 A	$6.2 \pm 0.6 \mathrm{~V}$	50 mV	2\%
		2	+12 V	0.5 A	2.5 A	3 A	4 A		120 mV	+10\%, -5\% (D)
		3	-12 V	0	1 A	1 A	1.2 A		120 mV	3\%
		4(C)	5 V	0	2.0 A	3 A	4 A		50 mV	2\%
GLC75P	GLM75P	1	+5.1 V	1 A	8 A	10 A	12 A	$6.2 \pm 0.6 \mathrm{~V}$	50 mV	2\%
		2	+24 V	0.5 A	4 A	4 A	4.5 A		240 mV	+10\%, -5\% (D)
		3	-12 V	0 A	1 A	1 A	1.2 A		120 mV	3\%
		4	+12 V	0 A	2.5 A	3 A	4 A		120 mV	2\%

A. Rating with unrestricted convection cooling. Total power not to exceed 75 W .
B. Rating with 26 cfm forced-air cooling. Total power not to exceed 110 W .
C. Floating fourth output can be referenced as either positive or negative. Connect pin 12 to Return to provide a positive voltage at Pin 13

Connect pin 13 to Return to provide a negative voltage at Pin 12.
D. To maintain these regulations conditions, the +5 V current must be at least $1 / 5$ of V 2 and not greater than 5 times the V 2 current. Requires +5 V to be adjusted to within 1% with at least a 1 A load to maintain regulation on this output

GLC75/GLM75 MECHANICAL SPECIFICATIONS

INPUT: J1

AMP P/N: 643495-2 0.312 CTRS CONNECTOR, 3 CIRCUIT	
PIN 1 A	AC GROUND
PIN 3 A	AC NEUTRAL
PIN 5 A	AC LINE
OUTPUT: J2	
AMP P/N: 1-640445-3 0.156 CTR HEADER	
PIN \# M	MULTI-OUTPUT MODEL
1 O	OUTPUT\#1
2 OU	OUTPUT\#1
3 OU	OUTPUT\#1
4 Com	COMMON
5 Com	COMMON
6 Com	COMMON
7 C	COMMON
8 O	OUTPUT\#2
O	OUTPUT \#2
10 P	POWERFAIL
11 O	OUTPUT\#3
12 C	COMMON
13 O	OUTPUT\#4
MATING CONNECTOR AMP P/N'S	
INPUT: OUTPUT:	HOUSING
	640250-5
	T: 1-640250-3
CONTACT	
INPUT:	770476-1
OUTPUT:	T: 770476-1
NOTE: 5A MAXIMUM RECOMMENDEDCURRENT PER CONNECTOR PIN.	
WEIGHT 1.2 LBS. MAX. [0.544 kg]	
TOLERANCES: X.XX=0.030	
X. $\mathrm{XXX}=0.010[0.25 \mathrm{~mm}]$	

Environmental Specification	Operating	Non-operating
Temperature (A)	0 to $50^{\circ} \mathrm{C}$	-40 to $+85^{\circ} \mathrm{C}$
Humidity (A)	0 to $95 \% \mathrm{RH}$	0 to $95 \% \mathrm{RH}$
Shock (B)	$20 \mathrm{~g}_{\mathrm{pk}}$	$40 \mathrm{~g}_{\mathrm{pk}}$
Altitude	-500 to $10,000 \mathrm{ft}$	-500 to $40,000 \mathrm{ft}$
Vibration (C)	$1.5 \mathrm{~g}_{\mathrm{rms}}, 0.003 \mathrm{~g}^{2} / \mathrm{Hz}$	$5 \mathrm{~g}_{\mathrm{rms}}, 0.026 \mathrm{~g}^{2} / \mathrm{Hz}$

A. Units should be allowed to warm up/operate under non-condensing conditions before application of power. Derate output current and total output power by 2.5% per ${ }^{\circ} \mathrm{C}$ above $50^{\circ} \mathrm{C}$.
B. Random vibration- 10 to $2000 \mathrm{~Hz}, 6 \mathrm{~dB} /$ octave roll-off from 350 to $2000 \mathrm{~Hz}, 3$ orthogonal axes. Tested for 10 min ./axis operating and 1 hr ./axis non-operating.
C. Shock testing-half-sinusoidal, 10 ± 3 ms duration, \pm direction, 3 orthogonal axes, total 6 shocks.

